TEX1000LIGHT

USER MANUAL
VOLUME1

File Name: TEX1000LIGHT_ING_1.1.indb
Version: 1.1
Date: 06/07/2020
Revision History

Date	Version	Reason	Editor
$07 / 08 / 2017$	1.0	First Version	J. H. Berti
$06 / 07 / 2020$	1.1	Technical Specification Update	J. H. Berti

TEX1000LIGHT - User Manual
Version 1.1
© Copyright 2017-2020
R.V.R. Elettronica

Via del Fonditore 2/2c - 40138 - Bologna (Italia)
Telephone: +39 0516010506
Fax: +390516011104
Email: info@rvr.it
Web: www.rvr.it

All rights reserved
Printed and bound in Italy. No part of this manual may be reproduced, memorized or transmitted in any form or by any means, electronic or mechanic, including photocopying, recording or by any information storage and retrieval system, without written permission of the copyright owner.

Notification of intended purpose and limitations of product use

This product is a FM transmitter intended for FM audio broadcasting. It utilises operating frequencies not harmonised in the intended countries of use. The user must obtain a license before using the product in intended country of use. Ensure respective country licensing requirements are complied with. Limitations of use can apply in respect of operating freuency, transmitter power and/or channel spacing.

Declaration of Conformity
Hereby, R.V.R. Elettronica, declares that this FM transmitter is in compliance with the essential requirements and other relevant provisions of Directive 2014/53/EU.

Technical Specifications

			TEX 1000LIGHT	
Parameters		U.M.	Value	Notes
GENERALS				
Frequency range		MHz	87.5×108	
Rated output power		W	1000	Continuously variable by software from 0 to maximum
Modulation type			F3E Direct carrief frequency	
Operational Mode			Mono, Stereo, Multiplex	
Working temperature		${ }^{\circ} \mathrm{C}$	-5 to +50	
Working Humidity		\%	95 (Without condensing)	
Working Altitude		mt	3000	With adequate air evacuation system in site
Frequency programmability			From software, with 10 kHz steps	
Frequency stability	Working Temp. from $-5^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$	ppm	± 1	
Modulation capability		kHz	150 Stereo, 180 Mono/MPX	Meets or exceeds all FCC and CCIR rules
Pre-emphasis mode		HS	0, 50 (CCIR), 75 (FCC)	selectable by rear panel dip switches
Spurious \& harmonic suppression		dBC	<75 (80 typical)	Meets or exceeds all FCC and CCIR rules
Asynchronous AM S/N ratio	Referred to 100% AM, with no de-emphasis	dB	e 65 (typical 70)	
Synchronous AM S/N ratio	Referred to 100% AM, FM deviation 75 kHz by 400 Hz sine, without de-emphasis	dB	e 50 (typical 60)	
MONO OPERATIO				
S/N FM Ratio	RMS @ $\pm 75 \mathrm{kHz}$ peak, HPF 20 Hz - LPF 23 kHz , $50 \mu \mathrm{~S}$ de-emphasis	dB	> 78 (typical 83)	
	Qpk @ $\pm 75 \mathrm{kHz}$ peak, CCIR weighted, $50 \mu \mathrm{~S}$ de-emphasis	dB	>70	
	Qpk @ $\pm 40 \mathrm{kHz}$ peak, CCIR weighted, $50 \mu \mathrm{~S}$ de-emphasis	dB	>67	
Frequency Response	$30 \mathrm{~Hz} \div 15 \mathrm{kHz}$	dB	better than $\pm 0.5 \mathrm{~dB}$ (typical ± 0.2)	
Total Harmonic Distortion	$\mathrm{THD}+\mathrm{N} 30 \mathrm{~Hz} * 15 \mathrm{kHz}$	\%	<0.1 (Typical 0.07\%)	
Intermodulation distortion	Measured with a 1 KHz , 1.3 KHz tones, 1:1ratio, @ 75 kHz FM	\%	< 0.05	
Transient intermodulation distortion	3.18 kHz square wave, 15 kHz sine wave @ 75 kHz FM	\%	< 0.1 (typical 0.05)	
MPX OPERATION				
Composite S/N FM Ratio	RMS @ $\pm 75 \mathrm{kHz}$ peak, HPF 20Hz - no LPF, $50 \mu \mathrm{~S}$ de-emphasis	dB	> 78 (typical 83)	
Frequency Response	$3 \mathrm{~Hz} \div 53 \mathrm{kHz}$	dB	± 0.2	
	$53 \mathrm{kHz}+100 \mathrm{kHz}$	dB	± 0.5	
Total Harmonic Distortion	THD $+\mathrm{N} 30 \mathrm{~Hz} \div 53 \mathrm{kHz}$	\%	<0.1	
	THD+N $53 \mathrm{kHz}+100 \mathrm{kHz}$	\%	<0.15	
Intermodulation distortion	Measured with a 1 KHz , 1.3 KHz tones, 1:1ratio, @ 75 kHz FM	\%	< 0.05	
Transient intermodulation distortion	3.18 kHz square wave, 15 kHz sine wave @ 75 kHz FM	\%	< 0.1 (typical 0.05)	
Stereo separation	$30 \mathrm{~Hz} \div 53 \mathrm{kHz}$	dB	$>50 \mathrm{~dB}$ (typical 60)	
STEREO OPERATION				
Stereo S/N FM Ratio	RMS @ $\pm 75 \mathrm{kHz}$ peak, HPF 20 Hz - LPF 23 kHz , $50 \mu \mathrm{~S}$ de-emphasis, $L \& R$ demodulated	dB	> 73 (75 typical)	
		dB	> 65 dB	
	Qpk @ $\pm 40 \mathrm{kHz}$ peak, CCIR weighted, $50 \mu \mathrm{~S}$ de-emphasis, L \& R demodulated	dB	>58 dB	
Frequency Response	$30 \mathrm{~Hz} * 15 \mathrm{kHz}$	dB	± 0.5	
Total Harmonic Distortion	THD $+\mathrm{N} 30 \mathrm{~Hz} \div 15 \mathrm{kHz}$	\%	<0.05	
Intermodulation distortion	Measured with a 1 KHz , 1.3 KHz tones, 1:1ratio, @ 75 kHz FM	\%	d 0.03	
Transient intermodulation distortion	3.18 kHz square wave, 15 kHz sine wave @ 75 kHz FM	\%	< 0.1 (typical 0.05)	
Stereo separation		dB	>50 (typical 55)	
Main / Sub Ratio	$30 \mathrm{~Hz} * 15 \mathrm{kHz}$	dB	>40 (typical 45)	
SCA OPERATION				
Frequency response	$40 \mathrm{kHz}+100 \mathrm{kHz}$	dB	± 0.5	
Crosstalk to main or to stereo channel	RMS, ref @ $\pm 75 \mathrm{kHz}$ peak, no HPF/LPF, $0 \mu \mathrm{~S}$ de-emphasis, with 67 kHz tone on SCA input @ 7,5kHz FM deviation	dB	> 75 (typical 78)	
	RMS, ref @ $\pm 75 \mathrm{kHz}$ peak, no HPF/LPF, $0 \mu \mathrm{~S}$ de-emphasis, with 92 kHz tone on SCA input @ $7,5 \mathrm{kHz}$ FM deviation	dB	> 78 (typical 80)	
POWER REQUIREMENTS				
AC Power Input	AC Supply Voltage	VAC	$115 / 230 \pm 15 \%\left({ }^{*}\right)$	${ }^{*}$) Internal switch (${ }^{(*)}$) monophase (${ }^{(+*)}$) Threephases Y
	AC Apparent Power Consumption	VA	1460	
	Active Power Consumption	W	1442	
	Power Factor		0,99	
	Overall Efficiency	\%	Typical 70	
	Connector		Terminal Block	
DC Power Input	DC Supply Voltage	VDC		
	DC Current	ADC		(*) max 25W (**) max 140W
MECHANICAL DIMENSIONS				
Phisical Dimensions	Front panel width	mm	483 (19")	19 " EIA rack
	Front panel height	mm	132 3HE	convertire in pollici
	Overall depth	mm	525	
	Chassis depth	mm	501	scluso il pannello, esclusi i connettori, convertire in pollici
Weight		kg	about 21,5	
Cooling		dBA	Forced, with internal fan	

AUDIO INPUTS				
Left / Mono	Connector		XLR F	
	Type		Balanced	
	Impedance	Ohm	10 k or 600	Selectable by rear panel dip switches
	Input Level/Adjust	dBu	-13 to +13	continuosly variable
Right	Connector		XLR F	
	Type		Balanced	
	Impedance	Ohm	10 k or 600	Selectable by rear panel dip switches
	Input Level	dBu	-13 to + 13	continuosly variable
MPX	Connector		BNC	
	Type		unbalanced	
	Impedance	Ohm	10 k or 50	Selectable by rear panel dip switches
	Input Level / Adjust	dBu	*-13 to +13	for 75 KHz FM , externally adjustable
SCARDS	Connector		$2 \times \mathrm{BNC}$	
	Type		unbalanced	
	Impedance	Ohm	10 k	
	Input Level / Adjust	dBu	*-8 to +13	for $7,5 \mathrm{KHz} \mathrm{FM}$,
AES/EBU (optional)	Connector		XLR F	
	Type		Balanced	
	Impedance	Ohm	110	
	Input Level / Adjust	dBfs	0 to -10	for 7,5 KHz FM, externally adjustable
TOS/Link(optional)	Connector		TOS-LINk	
	Type		Optical	
OUTPUTS				
RF Output	Connector		7/16"	
	Impedance	Ohm	50	
RF Monitor	Connector		BNC	
	Impedance	Ohm	50	
	Output Level	dB	approx. -60	Referred to the RF output
Pilot output	Connector		BNC	For RDS and isofrequency synchronizing purpose
	Impedance	Ohm	>5 k	
	Output Level	Vpp	1	
AUXILIARY CONNECTIONS				
Interlock	Connector		$2 \times \mathrm{BNC}$	Input and output for remote power inhibition (short is RF off)
Service	Connector		DB9 F	Factory reserved for firmware program
Remote Interface	Connector		DB15F	IIC +5 analog / digital inputs, 5 analog / digital outputs
FUSES				
On Mains			2 External fuse F 25 T - $10 \times 38 \mathrm{~mm}$	
On services				
On PA Supply			2 Internal fuses F 25 A $10 \times 38 \mathrm{~mm}$	
On Driver Supply				
HUMAN INTERFACES				
Input device			4 pushbutton	
Display			Alphanumerical LCD -2×16	
TELEMETRY/TELECONTROL				
Remote connector inputs		10	FWD fold	For P.A. A.G.C. purpose, min $0,5 \mathrm{Vcc}$
	Analogical level	2	REF fold	For P.A. A.G.C. purpose, min $0,5 \mathrm{Vcc}$
	Pulse to GND	14	RF ON	
		15	RF OFF	
	Close to GND	1	Interlock	for remote power inhibition (short is RF off)
Remote connector outputs	Analogical level	6	FWD	$\max 5 \mathrm{Vcc}$
		13	REF	$\max 5 \mathrm{Vcc}$
		5	VPA	max 5 Vcc
		12	IPA	max 5 Vcc
	Open Collector	7	Power Good	open collector

Table of Contents

1. Preliminary Instructions 1
2. Warranty 1
3. First Aid 2
3.1 Treatment of electrical shocks 2
3.2 Treatment of electrical Burns 2
4. General Description 3
4.1 Unpacking 3
4.2 Features 3
4.3 Frontal Panel Description 5
4.4 Rear Panel Description 6
4.5 Connector Pinouts 7
5. Quick guide for installation and use 9
5.1 Preparation 9
5.2 First power-on and setup 10
5.3 Operation 13
5.4 Management Firmware 15
5.5 Optional functions 20
6. Module identification 23
6.1 Top view 23
6.2 Bottom view 24
7. Working Principles 25
7.1 Power supply 25
7.2 Interface board 27
7.3 Panel board 27
7.4 Main Board 27
7.5 Driver Board 28
7.6 Power amplifier 28
7.7 LPF Board 28
7.8 Bias Board 29
7.9 External Telemetry Interface Board 29

IMPORTANT

 which is necessary gave it full attention to avoid risk of electric shocks.The symbol of exclamation mark inside a triangle placed on the product, informs the user about the presence of instructions inside the manual that accompanies the equipment, important for the efficacy and the maintenance (repairs).

1. Preliminary Instructions

- General Warnings

This equipment should only be operated, installed and maintained by "trained" or "qualified" personnel who are familiar with risks involved in working on electric and electronic circuits. "Trained" means personnel who have technical knowledge of equipment operation and who are responsible for their own safety and that of other unqualified personnel placed under their supervision when working on the equipment.
"Qualified" means personnel who are trained in and experienced with equipment operation and who are responsible for their own safety and that of other unqualified personnel placed under their supervision when working on the equipment.

WARNING: Residual voltage may be present inside the equipment even when the ON/OFF switch is set to Off. Before servicing the equipment, disconnect the power cord or switch off the main power panel and make sure the safety earth connection is connected. Some service situations may require inspecting the equipment with live circuits. Only trained and qualified personnel may work on the equipment live and shall be assisted by a trained person who shall keep ready to disconnect power supply at need.
R.V.R. Elettronica shall not be liable for injury to persons or damage to property resulting from improper use or operation by trained/untrained and qualified/unqualified persons.

WARNING: The equipment is not water resistant. Any water entering the enclosure might impair proper operation. To prevent the risk of electrical shock or fire, do not expose this equipment to rain, dripping or moisture.

Please observe local codes and fire prevention rules when installing and operating this equipment.

WARNING: This equipment contains exposed live parts involving an electrical shock hazard. Always disconnect power supply before removing any covers or other parts of the equipment.
Ventilation slits and holes are provided to ensure reliable operation and prevent overheating; do not obstruct or cover these slits. Do not obstruct the ventilation slits under any circumstances. The product must not be incorporated in a rack unless adequate ventilation is provided or the manufacturer's instructions are followed closely.

WARNING: This equipment can radiate radiofrequency energy and, if not installed in compliance with manual instructions and applicable regulations, may cause interference with radio communications.

WARNING: This equipment is fitted with earth connections both in the power cord and for the chassis. Make sure both are properly connected.
radio interference, in which case the user may be required to take adequate measures.

The specifications and data contained herein are provided for information only and are subject to changes without prior notice. R.V.R. Elettronica disclaims all warranties, express or implied.While R.V.R. Elettronica attempts to provide accurate information, it cannot accept responsibility or liability for any errors or inaccuracies in this manual, including the products and the software described herein. R.V.R. Elettronica reserves the right to make changes to equipment design and/or specifications and to this manual at any time without prior notice.

- Notice concerning product intended purpose and use limitations.

This product is a radio transmitter suitable for frequencymodulation audio radio broadcasting. Its operating frequencies are not harmonised in designated user countries. Before operating this equipment, user must obtain a licence to use radio spectrum from the competent authority in the designated user country. Operating frequency, transmitter power and other characteristics of the transmission system are subject to restrictions as specified in the licence.

2. Warranty

La R.V.R. Elettronica warrants this product to be free from defects in workmanship and its proper operation subject to the limitations set forth in the supplied Terms and Conditions. Please read the Terms and Conditions carefully, as purchase of the product or acceptance of the order acknowledgement imply acceptance of the Terms and Conditions. For the latest updated terms and conditions, please visit ourweb site at WWW.RVR.IT. The web site may be modified, removed or updated for any reason whatsoever without prior notice. The warranty will become null and void in the event the product enclosure is opened, the product is physically damaged, is repaired by unauthorised persons or is used for purposes other than its intended use, as well as in the event of improper use, unauthorised changes or neglect.
In the event a defect is found, follow this procedure:
1 Contact the seller or distributor who sold the equipment; provide a description of the problem or malfunction for the event a quick fix is available.

Sellers and Distributors can provide the necessary information to troubleshoot the most frequently encountered problems. Normally, Sellers and Distributors can offer a faster repair service than the Manufacturer would. Please note that Sellers can pinpoint problems due to wrong installation.

2 If your Seller cannot help you, contact R.V.R. Elettronica and describe the problem; if our staff deems it appropriate, you will receive an authorisation to return the equipment along with suitable instructions;

3 When you have received the authorisation, you may return the unit. Pack the unit carefully before shipment use the original packaging whenever possible and seal the package perfectly. The customer bears all risks of loss (i.e., R.V.R. shall not be liable for loss or damage) until the package reaches the R.V.R. factory. For this reason, we recommend insuring the goods for their full value. Returns must be sent on a C.I.F. basis (PREPAID) to the address stated on the authorisation as specified by the R.V.R. Service Manager.

Units returned without a return authorisation may
be rejected and sent back to the sender.
4 Be sure to include a detailed report mentioning all problems you have found and copy of your origina invoice (to show when the warranty period began) with the shipment.

Please send spare and warranty replacement parts orders to the address provided below. Make sure to specify equipment model and serial number, as well as part description and quantity.
R.V.R. Elettronica

Via del Fonditore, 2/2c
40138 BOLOGNA ITALY
Tel. +39 0516010506

3. First Aid

All personnel engaged in equipment installation, operation and maintenance must be familiar with first aid procedures and routines

3.1 Electric shock treatment

3.1.1 If the victim is unconscious

Follow the first aid procedures outlined below.

- Lay the victim down on his/her back on a firm surface.
- the neck and tilt the head backwards to free the airway system (Figure 1).

Figure 1

- If needed, open the victim's mouth and check for breathing
- If there is no breathing, start artificial respiration without delay (Figure 2) as follows: tilt the head backwards, pinch the nostrils, seal your mouth around the victim's mouth and give four fast rescue breaths.

Figure 2

- \quad Check for heartbeat (Figure 3); if there is no heartbeat, begin chest compressions immediately (Figure 4) placing your hands in the centre of the victim's chest (Figure 5).

Figure 3

Figure 4

Figure 5

- One rescuer: give 2 quick rescue breaths after each 15 compressions.
- Two rescuers: one rescue breath after each 5 compressions.
- Do not stop chest compressions while giving artificial breathing
- Call for medical help as soon as possible.

3.1.2 If the victim is conscious

- Cover victim with a blanket.
- Try to reassure the victim.
- Loosen the victim's clothing and have him/her lie down.
- Call for medical help as soon as possible.

3.2 Treatment of electric burns

3.2.1 Large burns and broken skin

- Cover affected area with a clean cloth or linen.
- Do not break any blisters that have formed; remove any clothing or fabric that is stuck to the skin; apply adequate ointment.
- Administer adequate treatment for the type of accident.
- Get the victim to a hospital as quickly as possible.
- Elevate arms and legs if injured.

If medical help is not available within an hour, the victim is conscious and is not retching, administer a solution of table salt and baking soda (one teaspoon of table salt to half teaspoon of baking soda every 250 ml of water).

Have the victim slowly drink half a glass of solution for four times during a period of 15 minutes.

Stop at the first sign of retching.
Do not administer alcoholic beverages.

3.2.2 Minor burns

- Apply cold (not ice cold) strips of gauze or dress wound with clean cloth.
- Do not break any blisters that have formed; remove any clothing or fabric that is stuck to the skin; apply adequate ointment.
- If needed, have the victim change into clean, dry clothing.
- Administer adequate treatment for the type of accident.
- Get the victim to a hospital as quickly as possible.
- Elevate arms and legs if injured.

4. General Description

TEX1000LIGHT is a compact FM transmitters manufactured by R.V.R. Elettronica for audio radio broadcasting in the 87.5 to 108 MHz band in 10kHz steps, featuring adjustable RF output up to 1000 W , under 50 Ohm standard load.

TEX1000LIGHT is designed to being contained into a 19" rack box of 3HE.

4.1 Unpacking

The package contains:
■ 1 TEX1000LIGHT

- 1 User Manual

■ 1 Mains power cables
The following accessories are also available from Your R.V.R. Dealer:

- Accessories, spare parts and cables

4.2 Features

The overall efficiency of TEX1000LIGHT is better than 70\% across the bandwidth, for this reason is part of RVR Green Line family.

This performance characteristic is guaranteed in a range between +0.25 dB and -3 $\mathrm{dB}(+5 \%$ and $-50 \%)$ referred to the nominal power of the equipment: for example from 500 W to 1050 W in case of TEX1000LIGHT; outside these limits the equipment is able to work properly but can not guarantee an efficiency of 70%.

This transmitters incorporate a low-pass filter to keep harmonics below the limits provided for by international standards (CCIR, FCC or ETSI) and can be connected directly to the antenna.

Two major features of TEX1000LIGHT is compact design and user-friendliness. Another key feature is its modular-concept design: the different functions are performed by modules with most connections achieved through male and female connectors or through flat cables terminated by connectors. This design facilitates maintenance and module replacement.

The RF power section of TEX1000LIGHT uses two LD-MOSFET modules delivering up to 800W output power each.

Operating frequency stability is ensured by a temperature-compensated reference oscillator and is maintained by a PLL (Phase Locked Loop) system. The transmitters will go into frequency lock within 30 seconds after power-on.

TEX1000LIGHT can operate throughout the frequency bank with no need for calibration or set-up.

An LCD on the front panel and a push-button panel provide for user interfacing with the microprocessor control system, which implements the following features:

- Output power setup.
- Working frequency setup.
- Power output enable/disable.
- User-selectable threshold settings for output power alarm (Power Good feature)
- Measurement and display of exciter operating parameters.
- Communication with external devices such as programming or telemetry systems via RS232 serial interface or $\mathrm{I}^{2} \mathrm{C}$.

Four LEDs on the front panel provide the following status indications: ON, LOCK, FOLDBACK and RF MUTE.

The exciter management firmware is based on a menu system. User has four navigation buttons available to browse submenus: ESC , , , ed ENTER.

The rear panel features the mains input connectors, as well as audio input connectors and RF output connector, telemetry connector, protection fuses and two inputs for signals modulated onto subcarriers by suitable external coders, such as RDS (Radio Data System) signals commonly used in Europe.

4.3 Frontal Panel Description

Figure 6.1
[1] ALARMS PS2
[2] ON
[3] LOCK
[4] FOLDBACK
[5] R.F. MUTE
[6] CONTRAST
[7] ALARMS PS1
[6] ESC
[7]
[8]
[9] ENTER
[10] DISPLAY
[11] POWER
[12] AIR FLOW

Not used.
Green LED - Turns on when exciter is powered on.
Green LED - Turns on when PLL is locked to operating frequency.
Yellow LED - Turns on when foldback current limiting (Automatic Gain Control) kicks in.
Yellow LED - Turns on when exciter power output is inhibited by an external interlock signal.
Display contrast trimmer.
Not used.
Press this button to exit a menu.
Navigation button used to browse menu system and edit parameters.
Navigation button used to browse menu system and edit parameters.
Press this button to confirm a modified parameter and open a menu.
Liquid Crystal Display.
ON/OFF key.
Air grille.

4.4 Rear Panel Description

[1] R.F. TEST
[2] GSM SLOT-IN
[3] GSM ANT
[4] AIR FLOW
[5] 10 MHz
[6] PILOT ADJ
[7] PHASE ADJ
[8] 19 kHz PILOT OUT
[9] PREEMPHASIS
[10] MODE/MPX IMP
[11] SCA2
[12] SCA1
[13] MPX
[14] SCA2 ADJ
[15] MPX ADJ
[16] SCA1 ADJ
[17] RIGHT ADJ
[18] RIGHT
[19] IMPEDANCE
[20] MAINS
[21] FUSE 1
[22] 10MHz
[23] R.F. OUTPUT
[24] INTERLOCK OUT
[25] SERVICE
[26] INTERLOCK IN
[27] FWD EXT. AGC
[28] RFL EXT. AGC
[29] MODEM
[30] REMOTE

Figure 6.2
Output with level -60 dB lower than output power level, suitable for modulation monitoring. Not suitable for spectrum analysis.
Reserved for future implementations.
Reserved for future implementations.
Air grille.
Reserved for future implementations.
Pilot tone trimmer.
Phase trimmer.
Tone output BNC connector, may be used to synchronise external devices such as RDS coders.
Preemphasis dip-switch, provides two settings: 50 or 75 $\mu \mathrm{s}$. Preemphasis affects the right and left inputs in stereo mode and the mono input. MPX inputs are not affected by preemphasis setting.
Dip-switch used to select transmission mode (STEREO or MONO) and MPX input impedance (50Ω or $10 \mathrm{k} \Omega$).
BNC connector for SCA2 input.
BNC connector for SCA1 input.
Unbalanced MPX input BNC connector.
Trimmer for SCA2 input level adjustment.
Trimmer for MPX input level adjustment.
Trimmer for SCA1 input level adjustment.
Trimmer for right input level adjustment.
Right audio channel input XLR connector.
Dip-switch used to select balanced audio input impedance (600Ω or $10 \mathrm{k} \Omega$).
Connectors for 230 V (+/- 15\%) 50-60 Hz mains power supply.
Mains power supply fuse.
Reserved for future implementations.
RF output connector, $7 / 16$ " (optionally $7 / 8$ ").
Interlock output BNC connector: when the transmitter goes into stand-by mode, the (normally floating) central conductor is switched to ground.
DB9 connector for factory setting.
Interlock input BNC connector: the exciter is forced in standby mode when the inner conductor is grounded.
Trimmer to set output power limitation according to FWD fold input.
Trimmer to set output power limitation according to RFL fold input.
Reserved for future implementations.
DB15 telemetry connector.
[31] RS232
[32] ADJ L
[33] ADJ R
[34] TOSLINK
[35] I2C BUS
[35] AES/EBU
[37] LEFT ADJ
[38] LEFT
[39] FUSE 2

DB9 connector for direct serial communication or modem (only with telemetry option).
Reserved for future implementations - adjustment trimmer for Left digital channel input.
Reserved for future implementations - adjustment trimmer for Right digital channel input.
Reserved for future implementations - TOS-LINK connector for digital audio input through fiber optic.
Normally not used, or used for customized functions (only with telemetry option).
Reserved for future implementations - XLR connector for AES/EBU digital audio input.
Trimmer for left input level adjustment.
Left audio channel input XLR connector.
Mains power supply fuse.

6.3 Connector Pinouts

6.3.1 RS232

Type: Female DB9

0	1	NC
0	2	SDA
0	3	SCL
0	4	NC
0	5	GND

6 NC
7 NC
8 NC
9 NC
6.3.2 Service (for factory setting)

Type: Female DB9

0	1	NC
2	2	TX_D
3	RX_D	
4	Internally connected to 6	
5	GND	
6	Internally connected to 4	
7	Internally connected to 8	
8	Internally connected to 7	
9	NC	

6.3.4 Left (MONO) / Right
 Type: Female XLR

1 GND
2 Positive
3 Negative

6.3.5 Remote

Type: Female DB15

	Pin	Name	Type	Purpose
	1	Interlock	IN	Inhibits power if closed to GND
	2	Ext AGC FWD	IN	Ext. signal, 1-12V, for limitation (AGC)
	3	GND		Ground
	4	SDA IIC	I/O	Serial data for IIC communication
	5	VPA TIm	ANL OUT	PA supply voltage: 3.9 V F.S.
	6	FWD TIm	ANL OUT	Forward power: 3.9V F.S.
	7	Power Good	DIG OUT	Indicates activation by switching the normally-open contact to ground (sect. 5.4.1).
	8	GND		Ground
	9	GND		Ground
	10	Ext AGC RFL	IN	Ext. signal, 1-12V, for limitation (AGC)
	11	SCL IIC	I/O	Clock for IIC communication
	12	IPA TIm	ANL OUT	PA supply current: 3.9 V F.S.
	13	RFL Tlm	ANL OUT	Reflected power: 3.9V F.S.
	14	On cmd	DIG IN	A pulse towards ground (500 ms) triggers power output
	15	OFF cmd	DIG IN	A pulse towards ground (500 ms) inhibits power output

5. Quick guide for installation and use

This section provides a step-by-step description of equipment installation and configuration procedure. Follow these procedures closely upon first power-on and each time any change is made to general configuration, such as when a new transmission station is added or the equipment is replaced.

Once the desired configuration has been set up, no more settings are required for normal operation; at each power-up (even after an accidental shutdown), the equipment defaults to the parameters set during the initial configuration procedure.

The topics covered in this section are discussed at greater length in the next sections, with detailed descriptions of all hardware and firmware features and capabilities. Please see the relevant sections for additional details.

IMPORTANT: When configuring and testing the transmitter in which the equipment is integrated, be sure to have the Final Test Table supplied with the equipment ready at hand throughout the whole procedure; the Final Test Table lists all operating parameters as set and tested at the factory.

5.1 Preparation

5.1.1 Preliminary checks

Unpack the exciter and immediately inspect it for transport damage. Ensure that all connectors are in perfect condition.

The main fuse can be accessed from the outside on the rear panel. Extract the fuse carrier with a screwdriver to check its integrity or for replacement, if necessary.

The following fuses are used:

	TEX1000LIGHT
@ 230 Vac	
Main power supply (fig. 6.2 - items [21] and [39])	(2x) 25A type 10x38

Table 5.1: Fuse
The mains power supply unit is the full-range type and requires no voltage setup.

Provide for the following (applicable to operating tests and putting into service):
$\sqrt{ }$ Single-phase $230(-15 \% /+10 \%)$ Vac mains power supply, with adequate earth connection.
\checkmark For operating tests only: dummy load with 50 Ohm impedance and adequate capacity (1000W for TEX1000LIGHT).
\checkmark Connection cable kit including:

- Mains power cable.
- Coaxial cable with BNC connectors for interlock signal connection between exciter and amplifier.
- RF cable for output to load / antenna (50 Ohm coaxial cable with standard 7/16" connector).
- Audio cables between transmitter and audio sources.

5.1.2 Connections

Connect the RF output of the transmitter to the antenna cable or a dummy load capable of dissipating exciter output power. To begin with, set exciter to minimum output power and switch it off.

Connect the transmitter INTERLOCK IN input to the matching INTERLOCK OUT output fitted on R.V.R. Elettronica equipment to act as hybrid couplers. If your equipment is a different brand, identify an equivalent output.

WARNING: Electric shock hazard! Never handle the RF output connector when the equipment is powered on and no load is connected. Injury or death may result.

Ensure that the POWER switch on the front panel is set to "OFF".
Connect the mains power cable to the MAINS connector on the rear panel.
Note : The mains must be equipped with adequate ground connection properly connected to the machine. This is a pre-requisite for ensuring operator safety and correct operation.

5.2 First power-on and setup

Perform this procedure upon first power-up and each time you make changes to the configuration of the transmitter this component is integrated into.

Note : Standard factory settings are RF output power off (Pwr OFF) and regulated output power set to upper limit (unless otherwise specified by customer).

5.2.1 Power-on

When you have performed all of the connections described in the previous paragraph, power on the exciter using the suitable power switch on the front panel.

5.2.2 Power check

Ensure that the ON LED turns on. Equipment name should appear briefly on the display, followed by forward power and modulation readings. If the RF output is disabled, those readings will be zero.

When the PLL locks to operating frequency, the LOCK LED will turn on.

5.2.3 How to enable the RF output

Check output power level and set it to maximum level (unless it has already been set) from the Power Setup menu that you will have accessed by pressing the following sequence of key: ESC (opens Default Menu) \Rightarrow ENTER (hold down for 2 seconds) \Rightarrow SET \Rightarrow use keys to set bar to upper limit.

5.2.4 Output power level control

IMPORTANT: The exciter incorporates Automatic Gain Control (AGC) and output power is modulated based on the power level set by the user and actual operating conditions, such as temperature, reflected power and other parameters. Please read section 5.3 for more details of RF power modulation.

Access the Power Setup Menu pressing the following keys in the order:
ESC (opens Default Menu) \Rightarrow ENTER (hold down for 2 seconds).
Use the keys and in the SET menu to set exciter output power; the setting bar at the side of SET provides a graphic indication of power setting; please consider that the forward power readout provided on the display (FWD: xxxx W) reflects actual output power reading, which may be lower than regulated power supply when Automatic Gain Control is running in power supply limitation mode (please read section 5.3 about RF power supply modulation for more details).

Note: Output power may be set using the Pwr OFF control. In this condition, the output power readout (Fwd) on the display will read 0 (zero); the SET bar will reflect any adjustments you make using the keys and provides a graphic indication of how much power supply will be delivered the moment you return to Pwr On state. GREGVine

5.2.5 Changing the Power Good alarm threshold

Change Forward Power Good alarm setting PgD from the Fnc menu as desired (factory setting is 50\%).

Please read section 5.4.1 for more details.

5.2.6 Setting equipment $\mathrm{I}^{2} \mathrm{C}$ address

Change the IIC address in the MIX (Miscellaneous) menu as desired (factory setting is 01).

Please read section 5.4.1 for more details.

5.2.7 Adjustments and calibration

The only manual adjustments are the level adjustments and the audio mode adjustment.

The rear panel holds the trimmers for all exciter inputs. Trimmer identification is printed on the rear panel. Input sensitivity can be set within the limits set out in the tables below through the trimmers:

Input sensitivity in Mono mode:

Input	Figure 6.2	Trimmer	Sensitivity	Note
SCA1	$[12]$	$[16]$	$-8 \div+13 \mathrm{dBm}$	Input level for $7,5 \mathrm{kHz}$ deviation $(-20 \mathrm{~dB})$
SCA2	$[11]$	$[14]$	$-8 \div+13 \mathrm{dBm}$	
MPX	$[13]$	$[15]$	$-13 \div+13 \mathrm{dBm}$	Input level for 75 kHz deviation $(0 \mathrm{~dB})$
Mono	$[38]$	$[37]$	$-13 \div+13 \mathrm{dBm}$	

Input sensitivity in Stereo mode:

Input	Figure 6.2	Trimmer	Sensitivity	Note
MPX	$[12]$	$[14]$	$-20 \div+13 \mathrm{dBm}$	Input level for 75 kHz deviation (0 dB)
SCA1	$[11]$	$[15]$	$-8 \div+13 \mathrm{dBm}$	Input level for $7,5 \mathrm{kHz}$ deviation $(-20 \mathrm{~dB})$
SCA2	$[10]$	$[13]$	$-8 \div+13 \mathrm{dBm}$	
Left	$[34]$	$[33]$	$-13 \div+13 \mathrm{dBm}$	Input level for 75 kHz deviation $(0 \mathrm{~dB})$
Right	$[17]$	$[16]$	$-13 \div+13 \mathrm{dBm}$	

When setting input sensitivity, please consider that the default menu reports instantaneous modulation level and an indicator provides a 75 kHz reading. To ensure correct adjustment, apply a signal with the same level as user's audio broadcast maximum level and then adjust using the trimmer until instantaneous deviation matches the 75 kHz reading.

To set subcarrier input levels, you may use the same procedure and option "x10" available in the Fnc menu. With this option, modulation level is multiplied by a factor of 10 , which means that default menu bar meter reflects a 7.5 kHz deviation.

A special menu with separate indications of Left and Right channel levels and relating indicators of nominal levels for maximum deviation $(75 \mathrm{kHz})$ is provided.

- Preemphasis:

- L and R (XLR type) input impedance:

Switch 1: R XLR input impedance, $\mathrm{ON}=600 \Omega, \mathrm{OFF}=10 \mathrm{k} \Omega$

Switch 2: L XLR input impedance, ON = 600Ω, OFF = $10 \mathrm{k} \Omega$

- MPX input operation mode/impedance:

Switch 1: Mode of operation ON = Mono, OFF = Stereo

Switch 2: MPX input impedance, ON = 50Ω, OFF = $10 \mathrm{k} \Omega$

5.3 Operation

1) Power on the exciter and ensure that the $\mathbf{O N}$ light turns on. Machine name should appear briefly on the display, quickly followed by forward and reflected power readings (Menu 1), provided that the exciter is delivering output power.

W

Menù 1
1b) To modify power level setting, hold down the ENTER button until opening the power setup menu.
The edit screen will look like this:

SET : ||||||||||||||||||
 Fwed: 997

W

Menù 2
Next to SET indication, a bar provides a graphic display of preset output power. The filled portion of the bar is proportional to set power level.

Example	Full bar	$\cong 1000 \mathrm{~W}$ in uscita (mod.TEX1000LIGHT)
100% output power	Half bar	$\cong 500 \mathrm{~W}$ in uscita (mod.TEX1000LIGHT)

25% output power	$1 / 4$ bar	250 W in uscita (mod.TEX1000LIGHT)

The bottom line provides instantaneous power reading (in this example 997W); press button to increase level, press to decrease it. When you have achieved the desired level, press ENTER to confirm and exit the default menu. Please note that the setting is stored automatically; in other words, if you press ESC or do not press any keys before the preset time times out, the latest power level set will be retained.

NOTE: This feature prevents the machine from delivering maximum power as soon as output is enabled from menu 4, or in the event the machine is already set to ON and energised.
2) Ensure that machine is not in a locked-out state. Press the ESC key to call up the selection screen (Menu 3). Highlight Fnc and press ENTER to confirm and access the appropriate menu (menu 4).
If LOC is set to REMOTE (machine remote control), move cursor to LOC and press ENTER; label will change to LOCAL, i.e. local control operation mode.

In the same menu, ensure that power limiting is disabled: if PWR is set to OFF, i.e. power output is disabled, move cursor to PWR. Press ENTER and label will switch to ON, i.e. power output enabled.
Press ESC twice to go back to the default menu (menu 1).
3) Fine tune power setting from menu 2 (see description of item 1 b) until achieving the desired value.

WARNING: Machine is capable of delivering more than rated output power (1000 W); however, never exceed the specified power rating.

NOTE: If power is set to 0 W in the Power Setup Menu, the INTERLOCK OUT contact is activated and any external appliances connected to it are immediately inhibited.

Next, you can review all operating parameters of the machine through the management firmware.

Normally, the machine can run unattended. Any alarm condition is handled automatically by the safety system or is signalled by the LED indicators on the panel or by display messages.

NOTE: Standard factory settings are: output power set to upper limit (unless otherwise specified by customer) and OFF.

5.4 Management Firmware

The machine features an LCD with two lines by 16 characters that displays a set of menus. Figure 5.2 below provides an overview of machine menus.

The symbols listed below appear in the left portion of the display as appropriate:

- (Cursor) - Highlights selected (i.e. accessible) menu.
* (Filled arrow) - Editable parameter marker. This symbol appears in menus that take up more than two lines to aid browsing.
plos (Three empty arrows) - Parameter is being edited.
F (Empty arrow) - Current line marker; the parameter in this line cannot be edited. This symbol appears in menus that take up more than two lines to aid browsing.

Figure 5.2
When the display is off, touching any key will turn on backlighting.

When the display is on, pressing the ESC button from the default menu (menu 1) calls up the selection screen (menu 3), which gives access to all other menus:

```
Fric Fur F.A Set.
Mix Ure L&R
```

Menu 3
If the temperature alarm is enabled and the alarm threshold is exceeded, the following screen will be displayed (only if you are in the default screen):

中 : ATTENTIOH + : OUEF TEHFERATURE

State 1
As soon as operating conditions are restored, power output is re-enabled with the same settings in use prior to the alarm condition.

Under 20 kHz , no modulation occurs. After a preset time of about 5 minutes (not editable), a NO AUDIO condition is indicated in the main screen, but power is not inhibited.

```
Nod: NO RUDIO
Fwod:
    \square
    W
```

State 2
To gain access to a submenu, select menu name (name is highlighted by cursor) using button or \triangleleft and press the ENTER button.

To return to the default menu (menu 1), simply press ESC again.

5.4.1 Operation Menu (Fnc)

In this menu, you can toggle exciter power output On/Off, set deviation display mode and the threshold rate for Forward (PgD) or Reflected (PgR) Power Good.

To edit an item, highlight the appropriate line using the and buttons and then press and hold the ENTER button until the command is accepted. This way, Pwr setting is toggled between On and Off and Mod setting is toggled between "x1" and "x10". To edit the Power Good rate, simply select item "PgD" or "PgR" and edit its value using the UP and DOWN buttons; finally, press ENTER to confirm.

Menu 4
Pwr Enables (ON) or disables (OFF) exciter power output.
Mod Modifies modulation display (toggles between "x1" and "x10"). In "x10" mode, instantaneous deviation indication is multiplied by a factor of 10 , and the bar meter on the default menu will reflect 7.5 kHz instead of 75 kHz . This display mode is convenient when you wish to display low deviation levels, such as those caused by pilot tone or subcarriers.

PgD Modifies Power Good threshold for forward power. The Power Good rate is a percent of equipment rated power (1000W for TEX1000LIGHT), not of forward output power. This means that this threshold set at 50\% will give 500 W regardless of set power level. The Power Good feature enables output power control and reporting. When output power drops below set Power Good threshold, the equipment changes the state of pin [7] of the DB15 "Remote" connector located on the rear panel.

PgR Modifies Power Good threshold for reflected power. The Power Good rate is a percent of equipment rated power (100 W for TEX1000LIGHT), not of reflected output power. This means that this threshold set at 10\% will give 10W regardless of set power level. The Power Good feature enables output power control and alarm management.

NOTE: This alarm does not trip any contacts in the DB15 "Remote" connector and is only available in systems equipped with telemetry.

5.4.2 Power Menu (Pwr)

This screen holds all readings related to equipment output power:

PFwd:	997	W
Rfl:	12	W

Menù 5
Fwd Forward power reading.
Rfl Reflected power reading.
Note that these are readings, rather than settings, and cannot be edited (note the empty triangle). To change power setting, go to the default menu as outlined earlier.

5.4.3 Power Amplifier (P.A) Menu

This screen is made up of four lines that can be scrolled using the and buttons and shows the readings relating to final power stage:

Menu 6
Note that these are readings, rather than settings, and cannot be edited (note the empty arrow).

VPA Voltage supplied by amplifier module.
IPA Current draw of amplifier module.
Eff Efficiency based on ratio of forward power to amplifier module power, in percent (FWD PWR/(Vpa x lpa) \%).
Tmp Equipment internal temperature reading.

5.4.4 Setup Menu (Set)

This menu lets you view and set operating frequency.

-F1 : 98. 60 HHz

Menu 7

F1 Operating frequency setup. Set a new frequency value and then press the ENTER button to confirm your selection; the exciter unlocks from current frequency (the LOCK LED turns off) and will lock to the new operating frequency (LOCK turns back on again). If you press ESC or let the preset time time out, the previous frequency setting is retained.

5.4.5 Miscellaneous Menu (Mix)

This menu lets you set equipment address in an $I^{2} \mathrm{C}$ bus serial connection:

Menu 8
I IC $\quad I^{2} \mathrm{C}$ address setting. The $I^{2} \mathrm{C}$ network address becomes significant when the exciter is connected in an RVR transmission system that uses this protocol. Do not change it unless strictly required.

5.4.6 Version Menu (Vrs)

This screen holds equipment version/release information:

```
FRel:02010906
    Det.19/03/20044
    T:ba:TEXL-123456
```

Menu 9

Note that these are readings, rather than settings, and cannot be edited (note the empty arrow)

Rel Firmware release information.
Dat Release date.
Tab Shows table loaded in the memory.

5.4.7 Channels Menu (L\&R)

Right and left channel input levels are displayed as horizontal bars as shown in the figure below.

The bar meter reflects the level corresponding to a 100\% deviation for each channel and provides a convenient reference when setting audio channel input levels.

VL : |||||||||||||||||||
 ₹ : : ||||||||||||||||||||||||

Menu 10
L Left channel Vmeter.
R Right channel Vmeter.

5.5 Optional functions

A range of options is available for the product to add certain functions and/or modify existing functions. Outlined below are the functions available at the moment, which must be specified on order.

5.5.1 FSK option

The FSK function generates periodic carrier frequency shifts to generate a Morsecoded station ID code.

NOTE: This function is typically used in the USA.
The factory setting for frequency shift amplitude is +10 KHz and code repetition period is 60 minutes (please contact R.V.R. Elettronica if you need different settings), whereas station identified may be programmed by the user following the indications provided in section 5.5.1.1.

When the FSK option is fitted, an FSK submenu is added to the selection menu.

Fric Pur P.A Set Mix Urs LkR FSK

Menu 11

Press the ENTER key when FSK is highlighted in the selection menu to access the FSK submenu:

- FSK: OH Cod: 012345

Menu 12

FSK Enables / disables FSK code transmission.

Cod Shows the Morse code sent normally.

5.5.1.1 Changing the ID code

User may change the FSK code used as a station identifier at any time.
This procedure requires:

- 1 RS232 male-female cable;
- Hyper Terminal interface (make sure it has been installed together with Windows®) or equivalent serial communication software

A brief description of the procedure is provided below:

- Connect the PC serial port COM to the SERVICE connector on the rear panel of TEX1000LIGHT using a standard Male DB9 - Female DB9 serial cable.
- Power on the exciter;
- Launch the serial communication software;
- Set communication parameters as follows:

Baud Rate: 19200
Data Bit: 8
Parity: None
Stop Bit: 1
Flow control: None;

- Activate Caps-Lock through the communication software and send string CODE followed by the 6-character station ID code followed by Enter.

NOTE: To be treated as valid, the code must be made up of 6 alphanumeric characters and must contain no blank spaces; if acknowledged as valid, code is echoed back to the terminal, illegal codes are not echoed.

5.5.2 Power UP/DOWN Option

The Power UP/DOWN option modifies the signal receive function for the signals present at the telemetry connector.

RF section on / off control signals are treated as control signals for RF output power level to allow for UP/DOWN setting.

The UP or DOWN command is provided by switching the corresponding signal at the connector to ground for at least 500 mS (pin features internal pull-up to power supply).

Configuration of DB15F telemetry connector (Remote):

Pin Standard function
14 On cmd
Enables RF output power
15 Off cmd

Power UP/DOWN function

Up cmd
Increases RF output power
Down cmd

Disables RF output powerDecreases RF output power

5.5.3 RDS Option

Built-in RDS system with standard basic functions.

NOTE: For further informations, read WINRDS manual

5.5.4 Internet Telemetry Option

Telemetry system via the Internet.
NOTE: For further informations, read /TLW manual

5.5.5 Basic Internet Telemetry Option

Basic telemetry system via the Internet.
NOTE: For further informations, read /TLW-E manual

5.5.6 Telemetry Option with built-in modem

Telemetry system via internal GSM modem. Battery and battery changer included.

NOTE: For further informations, read /TLM manual

5.5.7 Telemetry Option without built-in modem

Internal telemetry system without modem.
NOTE: For further informations, read /TLC manual.

6. Module identification

TEX1000LIGHT is made up of several modules connected through connectors to facilitate maintenance and replacement (if needed).

6.1 Top view

The figure below shows a top view of the equipment and component locations.

Figure 6.1
[1] BIAS board
[2] Panel board
[3] PS Interface board
[4] Power Supply unit
[5] Surge Protection board
[6] Main Board
[7] FAN
[8] Temperature Measure Board
[9] Driver Board
[10] Splitter board
[11] RF module
[12] Fuse board
[13] Combiner board

6.2 Bottom view

Figure 6.2 below shows a bottom view of the equipment and component locations.

Figure 6.2
[1] FAN
[2] Telemetry board
[3] Surge Protection board
[4] Service Power supply
[5] Interface board

7. Working Principles

The figures below provide an overview of TEX1000LIGHT (fig. 7.1) modules and connections.

Figure 7.1
Following is a brief description of the different module functions; all diagrams and board layout diagrams are included in the "Technical Schedule" Vol.2.

7.1 Power supply

The TEX1000LIGHT power supply sections it can be divided into 3 basic sections:

1. Surge Protection: Surge Protection board protects machine from eventual unexpected variations of the mains voltage.
2. Service: This section contains elements that do not regard directly the power supply.
3. Power supply: this unit supplies an adapted supply to RF power amplifier modules.

7.1.1 Mains power supply surge protection

This module is enclosed in a sealed metal case; it features two externally mounted mains fuses and accommodates a bank of surge arresters that protect the machine from any surge events in the power mains.

On output from this module, the mains voltage reaches the "Power" main switch located on the front panel, and then comes to the service feeder.

Inside the surge protection module, a suitable $24 \mathrm{~V}_{\mathrm{DC}}$ relay controlled via the interface board. In this way, mains power supply is enabled when these requirements are met:

- POWER switch on front panel set to ON;
- No alarm or fault events present;
- Power output enabled (set to ON) in FNC operation menu;
- RF output power set to over OW using the edit mode.

7.1.2 Service Power Supply unit

251/5000
There is a switching power supply that can work with input mains voltage from 90 V to 250 V .

The 24 V output voltage is used to feed all control board, protection board and cooling fans.

7.1.3 Switching power supply

There is a switching power supply that has a PFC unit that modulates the absorbed current so that the waveform is as sinusoidal as possible, obtaining a power factor of 0.99 and can operate with input power input from 90 V to 250 V .

The $20-50 \mathrm{~V}_{\mathrm{DC}}$ output voltage is determined by the microprocessor according to the RF power required through a control input coming from the interface board.

7.2 Interface board

This board performs the following tasks:

- It uses AC voltage to generate and distribute service power supply over the panel board;
- It controls and provides interfacing of the mains surge protection module;
- It controls and provides interfacing of the power amplifier supply module;
- It processes and provides interfacing of the control signals to/from the Bias Board;
- It processes and provides interfacing of the control signals to/from the Panel Board.
- It feeds and operates the cooling fans.

7.3 Panel board

The panel board accommodates the microcontroller that runs equipment firmware and all user interface elements (display, LEDs, keys, ...).

This board is interfaced with other equipment modules via flat cables and provides for power supply, control signals and measurement distribution.

7.4 Main Board

The main board performs the following tasks:

- Audio and SCA input processing;
- Carrier generation;
- Modulation.

Both measurements are adequately processed and sent to the interface board that controls the protection modules and relays the signals to the CPU board to enable readings to be displayed.

7.4.1 Audio input section

The audio input section accommodates the circuitry that performs the following tasks:

- Input impedance selection
- 15 kHz filtering for R and L channels
- Stereophonic coding
- Preemphasis
- Mono, MPX and SCA channel mixing
- Clipper (limits modulating signal level so that frequency deviation never exceeds 75 kHz)
- Modulating signal measurement.

7.4.2 PLL/NCO section

This section of the board generates the modulated radiofrequency signal. It is based on a PLL architecture that includes an MB15E06 integrated circuit.

7.5 Driver Board

This section accommodates transistors that preamplifies the RF signal before it is relayed to the final power amplifier. When the exciter is placed into stand-by mode, the driver is inhibited, too.

7.6 Power amplifier

The RF power amplification section consists in several power modules (two on the TEX1000LIGHT) coupled through a Wilkinson splitter and combiner using strip-line technology.

Each RF module provides its power share using a single active element built using LD-MOS technology. RF modules are fed by the switching power supply via the Bias board.

The splitter splits the incoming power input signal equally to all RF modules. The combiner combines the power output signals available at module outputs to obtain total amplifier power.

Splitter, amplifiers and combiner have been designed to sum amplifier output power signals in phase, so as to keep unbalance and power dissipation to a minimum.

The whole RF section is mounted on a finned heat sink with fan cooling.

7.7 LPF Board

This board incorporates a low-pass filter to keep amplifier harmonics within permissible limits as specified by international standards.

A directional coupler is provided at filter output to measure forward and reflected RF output power; power readings are relayed to the Interface and Bias boards to enable processing and display.

The LPF board incorporates an RF output (having a level about -60 dB lower than output level) which is brought to a BNC connector. This provides a convenient test point to check carrier characteristics, but does not ensure accurate assessment of higher harmonics.

The filter also has a High Pass Filter section that sends the third harmonic generated by the final stage to a termination 50 Ohm 250 W (mounted near the driver); this stratagem helps to maintain a sufficiently high efficiency even in case of presence of SWR in antenna.

7.8 BIAS board

The main purpose of this board is to control and correct the bias voltage of the RF amplification section MOSFETs.
It also provides a measure of the total current drawn by the RF modules and incorporates a dedicated circuit for power supply fault reporting. Under normal conditions, bias voltage is adjusted according to set output power using feedback based on actual output power reading (AGC).

GREENine

Abnormal conditions affecting bias voltage so as to trigger foldback current limiting are:

- Reflected output power too high
- External AGC signals (Ext. AGC FWD, Ext. AGC RFL)
- Temperature too high
- Current draw of one RF module too high

7.9 External Telemetry Interface Board

This board provides an I/O interface for the CPU with the outside environment. All available equipment input and output signals are brought to the REMOTE DB15 connector.

Also mounted on this board is the INTERLOCK IN BNC connector which can disable device power output. When the central pin is closed to ground, output power is limited to zero until ground connection is removed.
\qquad
\longrightarrow
\qquad
\longrightarrow
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

R.V.R Elettronica

Via del Fonditore, 2 / 2c
Zona Industriale Roveri • 40138 Bologna • Italy Phone: +39 0516010506 • Fax: +39 0516011104 e-mail: info@rvr.it .web: http://www.rvr.it

CERTIFIED MANAGEMENT SYSTEM ISO 9001

